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Abstract. The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation
scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states
(DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier
WL implementations, by handling the final stage of the WL process as an entropic sampling scheme,
appropriate for the recording of the required two-parametric histograms. We test the accuracy of the
proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram
of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of
estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder
strength and the associated correlation length’s exponent, in agreement with previous estimates from
ground-state studies of the model.

PACS. 05.50+q – 64.60.Fr Equilibrium properties near critical points, critical exponents – 75.10.Nr Spin-
glass and other random models

1 Introduction

The RFIM [1–15] has been extensively studied both be-
cause of its interest as a simple frustrated system and
because of its relevance to experiments [16–21]. The
Hamiltonian describing the model is

H = −J
∑

<i,j>

SiSj − h
∑

i

hiSi, (1)

where Si are Ising spins, J > 0 is the nearest-
neighbors ferromagnetic interaction, and hi are indepen-
dent quenched random-fields (RF’s) obtained here from a
bimodal distribution of the form

P (hi) =
1
2
[δ(hi − 1) + δ(hi + 1)]. (2)

h is the disorder strength, also called randomness, of the
system. Various RF probability distributions, such as the
Gaussian, the wide bimodal distribution (with a Gaussian
width), and the above bimodal distribution (Eq. (2)) have
been considered [22–33]. As it is well known, the existence
of an ordered ferromagnetic phase for the RFIM, at low-
temperature and weak-disorder, follows from the seminal
discussion of Imry and Ma [1], when the space dimen-
sion is greater than two (D > 2). This has provided us
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with a general qualitative agreement on the sketch of the
phase boundary separating the ordered ferromagnetic (F)
phase from the high-temperature (strong-disorder) para-
magnetic (P) phase. The phase boundary separates the
two phases of the model and intersects the randomness
axis at the critical value of the disorder strength, denoted
hereafter as hc. Such qualitative sketching has been com-
monly used in most papers for the RFIM [25,31,34–36]
and close form quantitative expressions are also known
from the early mean-field calculations [37]. However, it is
generally true that the quantitative aspects of phase di-
agrams produced by mean-field treatments are very poor
approximations. This applies also for the bimodal RFIM,
for which, with the exception of the estimation of hc from
ground-state calculations [28–30], a reliable approxima-
tion of the phase diagram is still lacking. Furthermore,
despite the 30 years of theoretical and experimental study
the nature and scaling features of the transition of the
RFIM are not yet well understood [38–40]. Nowadays, it
is generally believed that the transition from the ordered
to the disordered phase is continuous, governed by the
zero-temperature random fixed-point [7,9,11], but a com-
plete set of values of the critical exponents fulfilling scal-
ing relations has not been established, despite the fact
that several bounds [41] and further inequalities [8,42] for
the critical exponents have been proposed, together with
modified scaling relations [43]. It is also now quite clear
that, the finite-size behavior of the system is obscured by
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strong and complex finite-size effects, involving the vio-
lation of self-averaging [36,44–50]. In particular the issue
of the order of the transition (first-order or continuous)
has regained much interest after the recent observations
of first-order-like features at the strong-disorder regime
for both the bimodal [51] and the Gaussian RF distribu-
tions [52,53].

This work presents a careful and systematic numeri-
cal approach to the phase boundary of the bimodal RFIM
in the low-temperature regime. The numerical approach,
presented below, is a proposal that may be also useful
to the study of other systems with complex energy land-
scapes, such as general random systems, spin glasses, pro-
teins, and others. From our simulations, corresponding to
systems with linear sizes L in the range L = 4–32, we
perform a finite-size scaling analysis leading also to a re-
fined value of the critical disorder strength hc, in good
agreement with the estimates obtained via the above men-
tioned ground-state techniques. We implement a novel ap-
proach that is based on the idea of entropic sampling in
restricted energy spaces [54,55] together with a reliable
extrapolation scheme and we produce accurate numeri-
cal data at the strong-disorder regime. Our analysis of
the low-temperature part of the phase diagram provides
us with a qualitative and also quantitative description of
the phase diagram of the model, also at low values of the
disorder strength, and produces good estimates for the
critical disorder strength and the correlation length’s ex-
ponent, in very good agreement with those from previous
zero-temperature studies of the model.

The rest of the paper is laid out as follows. In the next
Section we describe the numerical route implemented. In
Section 3 we present in detail the low-temperature aspects
of the phase diagram of the model. Finally, we summarize
our conclusions in Section 4.

2 Numerical approach

There exist two distinct kinds of purely numerical ap-
proaches to the RFIM. The first approach utilizes Monte
Carlo methods, including predominantly sophisticated
simulation techniques, such as cluster algorithms and flat-
histogram approaches, to study finite-temperature proper-
ties of the system [22,31,34,43,51,56–60], while the second
approach utilizes graph theoretical algorithms to deter-
mine the ground-states and estimate the zero-temperature
behavior of the RFIM [13,27–30,32,33,52,53,61]. This sec-
ond approach, is grounded on the belief that the critical
behavior of the model is governed by the non trivial RF
fixed-point at zero-temperature [7,9,11].

In this work, we follow a novel numerical approach
by combining current advances in simulation techniques.
The proposed approach is well adapted and efficient for
the study of the RFIM at the strong-disorder regime. Our
scheme will be outlined and tested in this section for the
3D bimodal RFIM and it is hoped that it will provide
a convenient and fast simulation tool for studying other
similar disordered or complex systems. In effect, we shall
use our earlier idea of the entropic implementation of the

WL algorithm [55], to produce a faithful approximation
of the exchange-field two-parametric DOS of the RFIM in
an appropriate neighborhood of the disorder strength.

The WL algorithm [62] is one of the most refreshing
improvements in Monte Carlo simulation schemes and has
been already applied to a broad spectrum of interesting
problems in statistical mechanics and biophysics [63]. Sev-
eral implementations of the WL sampling technique have
been carried out by many authors [51–53,63–73] and the
present approach may be also seen also as a further con-
tribution to the growing number of different applications
of the WL method in the study of complex systems with
rough energy landscapes. The original WL method has
been already applied to the RFIM in previous studies con-
cerning the properties of the system at specified values of
the disorder strength. Such recent investigations have been
presented for the bimodal [51] and also for the Gaussian
RFIM [52,53], respectively. The present approach follows
the implementation of the WL random walk used already
in our recent studies of the RFIM [36,48,49]. In these stud-
ies we have carried out the WL random walk in a restric-
tive and more efficient fashion. This restrictive version,
utilizes the so called critical minimum energy subspace
(CrMES) technique [54,55] to locate and study finite-size
anomalies of systems by carrying out the random walk
only in the dominant energy subspaces. Generally, our
finite-size scaling studies have shown that this restrictive
practice can be followed in systems undergoing second-
order [54,55,69–71] and also first-order transitions [72,73].
Details and tests of this approach for the 3D bimodal
RFIM can been found in reference [48], where the ther-
mal properties of the system at the disorder strength value
h = 2 were studied.

In a subsequent paper [49] the magnetic properties of
the RFIM were also considered by using the same restric-
tive scheme as an entropic sampling method. This simpli-
fication was introduced and tested for the first time in our
earlier work [55] on the 2D and 3D Ising models and soon
after that was used for the investigation and verification of
some universal properties of the order-parameter distribu-
tion [69]. According to this we may estimate the magnetic
properties of the systems by recording the two-parameter
energy-magnetization (E, M) histograms in the final stage
(high-levels) of the WL diffusion process. At the end of
the process the final accurate WL (one-parametric) DOS
G(E) and the cumulative H(E, M) histograms, are used
to determine the magnetic properties of the system, by
forming appropriate microcanonical averages of the order-
parameter moments [49,55,69,71–73].

The above description may be seen as a convenient
way to bypass the requirement of a two-parametric WL
sampling process and a very similar approach will be im-
plemented in this paper. We will now be recording, again
in the high-levels of the WL diffusion process, the cu-
mulative (exchange-energy, field-energy) two-parametric
histograms, in order to produce an approximation for
the two-parametric DOS of the RFIM. At this point, we
should stress that any multi-parametric WL process is
inevitably restricted to rather small lattices [62,74–77].
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In fact the applications of such multi-parametric meth-
ods are substantially limited, since besides the immense
time and excessive memory requirements, they very of-
ten face severe ergodic and/or convergence problems, de-
pending on both the physical system and the algorithmic
implementation. However, notable examples of such two-
parametric studies, mainly on 2D systems, discussing also
some of the above problems, have been carried out in the
last 10 years. The most recent two-parametric investiga-
tion performed by Tsai et al. [77] concerns the critical
endpoint of the 2D asymmetric Ising model with two and
three-body interactions on the triangular lattice. This last
study required several days of computer time and a quite
large computer memory for the larger lattice size studied,
consisting of N = 42 × 42 lattice points. To our knowl-
edge, this is also the largest system that has been reported
by the two-parametric WL algorithm. Certainly, a simi-
lar two-parametric study is possible, although lacking, for
the RFIM. However, the correspondingly large 3D system
will have linear sizes of the order of L = 12, and this
will be very small for our purposes. It will be seen in the
next Section, that such lattice sizes are rather small for
an accurate estimation of hc of the bimodal RFIM.

We now proceed to give the details of the present en-
tropic implementation of the WL approach. Carrying out
the WL process at a particular value h of the disorder
strength, we attempt to generate good approximations of
the (exchange-energy, field-energy) two-parametric DOS
for the RFIM in a neighborhood of h. An analogous
approach was undertaken several years ago, before the
invent of the WL method, by Deserno [78], who used
flat-histogram techniques and also a restricted energy
sampling to locate and study some properties of the tri-
critical point of the Blume-Capel model [79] on a simple
cubic lattice. The extrapolation scheme described below
subjects to the following WL process: depending on the
lattice size, we use a total of at least jWL = 20 WL it-
erations, producing at each iteration level well-saturated
energy-histogram fluctuations [80] and obeying at least
the 5% flatness criterion [54,55]. The reduction of the WL
modification factor follows the usual rule: fj+1 =

√
fj ,

f1 = e [54,55,62], and the range jWL ≥ 16 of the WL
process is used for the recording and accumulation of the
appropriate energy histograms (see definitions below).

To introduce our notation, let us now conveniently sep-
arate the Hamiltonian of equation (1) of the RFIM as fol-
lows

H(x) = −JHJ(x) − hHh(x) = −HJ(x) − hHh(x), (3)

where x denotes a spin state in phase space and we have
set J = 1, since the behavior of the model depends only on
the ration h/J . Assuming that the two-dimensional DOS
G(EJ , Eh) in the exchange and field variables EJ = HJ(x)
and Eh = Hh(x) is known, the DOS with respect to the
total energy E = H(x) = −EJ − h′Eh corresponding to
any value h′ of the disorder strength, can be deduced by
summing over all pairs giving the particular value of the

total energy

Gh′(E) =
∑

EJ+h′Eh=E

G(EJ , Eh). (4)

Let us further assume an entropic Markov process in which
M spin states are selected from the phase space with prob-
ability wh(x) depending on the DOS Gh(E), where E is
the total energy of the spin state at the value h of the
disorder,

wh(x) ∝ [Gh(E)]−1. (5)

Then, an approximation of the two-parametric (exchange-
energy, field-energy) DOS of the RFIM in a neighbor-
hood of h is provided by the expectation of the observable
δEJ ;HJ δEh;Hh

G̃(h)(EJ , Eh) � 1
Mwh(x)

∑

x∈{x}M

δEJ ;HJ δEh;Hh

� Gh(E)
H(h)(EJ , Eh)

H(h)(E)
, (6)

where the last equality follows from equation (4), us-
ing the above approximate two-dimensional DOS in
place of the exact and observing that H(h)(E) =∑

EJ+hEh=E H(h)(EJ , Eh) and the double histogram
H(h)(EJ , Eh) is the above sum of the observable
δEJ ;HJ δEh;Hh

. The superscript (h) in the quantities in the
above equation is only a reminder of the fact that the
simulation is performed at the disorder strength value h.
It should be noted that this notation does not mean an
h-dependence, but rather a statistical indirect influence
on the reliability of the histogram recordings and accord-
ingly on the two-dimensional DOS. In our approach the
ratio of histograms in the above equation (6), by the as-
sumed Markov process, is replaced by the ratio developed
during the final high-levels (jWL ≥ 16) of the WL pro-
cess. Denoting these latter histograms by H

(h)
WL(EJ , Eh)

and H
(h)
WL(E) and by G̃h(E) the WL DOS, as modified

at the final level of the process, our final approximation
reads

G̃WL(EJ , Eh) � G̃h(E)
H

(h)
WL(EJ , Eh)

H
(h)
WL(E)

. (7)

The above approximation provides in conjunction with the
skew summing procedure of equation (4) a suitable ex-
trapolation scheme which can be used for the study of the
RFIM in the neighborhood of the disorder value h, used
for the WL simulation. This extrapolation program will be
applied in the next Section for the study of the finite-size
development of the phase diagram of the bimodal RFIM
at the strong-disorder regime. From our previous studies
it has been verified [55,69] that the detailed balance con-
dition is quite well satisfied at the high-levels of the WL
process and the recording of appropriate histograms pro-
duces faithful and good approximations. Therefore, it is
hoped that the proposed extrapolation program will not
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Fig. 1. Illustration of the effect of the violation of the detailed
balance in the early WL iteration levels. Details of the shown
approximations are also given in the text.

produce systematic errors, besides the expected statisti-
cal fluctuations. However, for safety reasons, we shall use
relatively small values for the extrapolation shift param-
eter |h − h′|, at most of the order of 7% of the disorder
strength value, and a rather loose restriction of the en-
ergy space in which the main WL simulation is performed.
In particular, in most of our simulations performed at
h = 2.25 the energy spectrum for the simulation was re-
stricted only from the high-energy side, while the entire
low-energy part of the spectrum down to the ground-state
was included (see also the discussion below). For the re-
striction of the high-energy side we used our data from our
previous study of the model at the value h = 2. In this
way the WL sampling extends to all energy values with a
significant contribution to the finite-size anomalies of the
model for all values h > 2. For moderately large lattice
sizes (L > 12), this practice is not the optimum choice.
This is because, besides the energy states contributing to
the range h = 2.1–2.4, used in our extrapolation program,
one simulates also the part of the energy spectrum in the
neighborhood of the ground-states in which the conver-
gence of the algorithm is very slow. Thus, for the larger
lattice sizes, one may avoid this ground-state neighbor-
hood, as we have done for the sizes L = 26 and L = 32.

Before moving to the presentation of our results, let
us end this Section by presenting some tests on the reli-
ability of the proposed approach. Figure 1 illustrates the
accuracy of our practice of using the high-levels of the WL
process as an entropic sampling method. The curves and
points shown represent three different approximations of
the specific heat for a particular RF on a lattice of linear
size L = 8. The solid line is the directly simulated spe-
cific heat by the WL method at h = 2.1 and should be
seen as an almost exact result. The open circle points rep-
resent an excellent approximation obtained for the value
h = 2.1 by using a WL simulation at h = 2 and our
extrapolation scheme, using the high-WL iteration levels
(jWL = 16–20) for the recording the double (exchange-

Fig. 2. Specific heat curves for a certain RF of the lattice
size L = 8. Illustration of the behavior for several values of
the disorder strength obtained by direct WL simulation (lines)
and by the extrapolation scheme (points).

energy, field-energy) histograms. Finally, the dashed line
shows some quite dramatic distortion effects obtained by
using the whole (jWL = 1–20) WL iteration range for the
recording of the above two-dimensional energy histograms.
This is of course an example, showing possible subtle ef-
fects coming from a significant violation of the detailed
balance condition in the early WL iteration levels.

A second test showing now the reliability of our ex-
trapolation scheme is presented in Figure 2. Here we show
specific heat curves, in the range h = 2.1–2.4, obtained
by the proposed extrapolation scheme from a WL simu-
lation performed at h = 2.25, together with the results
obtained independently via direct WL simulation at the
corresponding disorder strength values. For values very
close to h = 2.25, the two different approximations coin-
cide, and even for the values h = 2.1 and h = 2.4 there
are only very small deviations, mainly around the peaks.
The locations of the pseudocritical temperatures are very
weakly dependent on the extrapolation scheme and are
therefore quite accurately determined by the method. The
effects on ensemble averages will be expected to be even
weaker. This is illustrated in our final test concerning the
pseudocritical temperatures obtained from the ensemble
average specific heat curve, used in the next Section for
the description of the phase diagram. The average specific
heat is defined as usually [58,59]

[C]av =
1
Q

Q∑

q=1

Cq(T ), (8)

where the index q = 1, . . . , Q runs over the number of
disorder realizations. Figure 3 concludes this Section by a
comparison of two approximations of the average specific
heat curve [C]av obtained from an ensemble of Q = 35
realizations and corresponding to the disorder strength
value h = 2.2. The solid line is the average curve ob-
tained by a direct WL simulation at h = 2.2, while the
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Fig. 3. Average specific heat curve at h = 2.2, obtained by
direct WL simulation (solid line) and by extrapolation (dotted
line), for lattice size L = 8 averaged over Q = 35 RF’s.

dashed line represents the approximation of the extrap-
olation scheme based on a WL simulation on the same
ensemble at the value h = 2. Clearly, the locations of the
two pseudocritical temperatures coincide and the two spe-
cific heat peaks are in excellent agreement.

3 Phase diagram

We aim here to present a reliable approximation of the
phase diagram of the 3D bimodal RFIM at the strong-
disorder regime and provide an accurate estimate for hc

(independent from the ground-state approach). Despite
the general qualitative agreement between different ap-
proaches on the phase diagram of the model, the various
estimations throughout the literature vary in a rather wide
range. This diversity on the numerical estimation of the
phase diagram is true for both the Gaussian and the bi-
modal distributions and is generally reflected in the wide
range of estimates for hc. Thus, for the Gaussian RFIM
the values for hc span the range hc = 2.26–2.37, despite
the fact that these values are mainly estimated via the
same ground-state approach [13,27,28,30,32–34,43,53,61].
On the other hand, there are fewer attempts devoted to
the estimation of the phase diagram of the bimodal RFIM
and the corresponding estimates for hc, obtained again
via the ground-state approach, are restricted in a smaller
range, i.e. hc = 2.20–2.25 [27,28,30]. Our previous attempt
to estimate the phase diagram using a high-temperature
(weak-disorder: h = 0.5–2) numerical study yielded an
overestimation for hc, namely hc = 2.42(18) [36]. How-
ever, we will show here, that an accurate estimation of
the phase diagram is possible by a more systematic low-
temperature (strong-disorder: h ≥ 2) numerical study. In
this case, we will find a much lower estimate for hc that
agrees favorably with the estimates given above from the
ground-state approach. Additional good comparisons with
some phase diagram points, estimated earlier in the litera-

ture, provide evidence that our final proposal for the phase
diagram may be a reliable and competent approximation
for the whole disorder strength range.

We proceed here to analyze our numerical data at
the strong-disorder regime. Using our entropic implemen-
tation of the WL method and the extrapolation proce-
dure, outlined in the previous section, we have gener-
ated numerical data for the following lattice sizes: L ∈
{4, 8, 12, 16, 20, 26, 32}. For lattice sizes in the range L =
4–20 we have simulated 20 RF’s, whereas for the larger
sizes L = 26 and L = 32, 10 realizations of the RF have
been simulated. For each lattice size and each realiza-
tion, we performed a WL simulation in an appropriate
energy subspace, restricted only from the high-energy end
and including the entire low-energy spectrum down to the
ground-state, with the exception of the sizes L = 26 and
L = 32 for which the very close to the ground-sate energy
levels were avoided. The WL simulation was performed at
the disorder strength value h = 2.25 and the accumulated
double (exchange-energy, field-energy) histogram was then
used to approximate the two-parametric DOS (Eq. (7))
and finally, the DOS Gh′(E) (Eq. (4)) and the thermal
properties of the system for various values of randomness
in a neighborhood of the simulated value h = 2.25. In or-
der to construct the average specific heat curve (Fig. 3)
and to identify via its peak a pseudocritical temperature
TL;h, representing the ensemble of RF’s at the particular
lattice size, a summation over the realizations was per-
formed, as in equation (8). As discussed earlier and illus-
trated in Figures 1–3, the described extrapolation scheme
provides a reliable approximation of the location of the
maximum of the average specific heat curve. The system-
atic shift of the individual specific heat peaks, shown in
Figure 2, for higher values of h, will be reflected in the
corresponding shifts of the peaks of the average specific
heat curves, as should be expected, providing us the neces-
sary information for the finite-size analysis. The locations
of all these specific heat peaks, for all lattice sizes men-
tioned above, were calculated from our simulation data
at h = 2.25, and their extrapolations to other neighbor
h-values, for the following set I of disorder values, set I:
h′ = {2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4}. For the lattice size
L = 12, an additional entropic WL sampling was carried
out at h = 2, using now a larger ensemble of Q = 250
RF’s. Again, using the extrapolation procedure of equa-
tions (7) and (4) the specific heat peaks corresponding to
the following set II of disorder values were located, set II:
h′ = {1.7, 1.8, 1.9, 2, 2.1, 2.2}.

Let us attempt now a finite-size analysis using the size-
shifts of the pseudocritical temperatures of the averaged
specific heat curves for some particular value of the dis-
order. The inset of Figure 4 illustrates fitting attempts of
these size-shifts for three values of the disorder. The range
L = 8–32 is used in these fits by assuming the usual power
law:

TL;h = Tc;h + ahL−1/νh . (9)

The critical temperatures Tc;h, resulting as limiting values
of the corresponding pseudocritical temperatures, for the
attempts shown in the inset of Figure 4, are 1.297(237),
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0.894(264), and 0.659(299), for the disorder strengths
h = 2.1, 2.15, and 2.2 respectively. We have excluded,
from our fitting attempts here, the lattice size L = 4
in order to eliminate the influence from the very small
L-behavior and this practice will be followed and fur-
ther discussed in the sequel. Following the same fitting
procedure, again in the range L = 8–32, for h = 2.25
we find that the corresponding critical temperature be-
comes now negative, i.e. Tc;2.25 = −0.18. This fact shows
that, within our fitting scheme, the value of the disorder
strength h = 2.25 is an upper bound for the critical
disorder strength. Noteworthy, that if we use the range
L = 4–32 instead, the negative sign for the critical tem-
perature will appear at the value h = 2.35, which how-
ever appears to be a rather overestimating bound for the
critical randomness. Thus, only the three points h = 2.1,
h = 2.15, and h = 2.2 (filled circles) resulting from the fits
shown in the inset of Figure 4 can be used to approximate
the phase diagram. In order to find one more point of the
phase diagram we shall now also use our earlier numerical
data [48] (from rather large Q = 500–1000 ensembles of
RF’s) for the disorder strength h = 2. Using the above
fitting practice in the range L = 8–32 we find from the
general pseudocritical temperature shift behavior the lim-
iting value Tc;2 = 1.848(188) (open triangle), which is just
inside the estimate bounds given in our previous paper
(Tc;2 = 2.03(18)) using sizes in the range L = 4–32 [48].

The above four approximate phase diagram points,
corresponding to the disorder strength values h = 2, 2.1,
2.15, and 2.2, will be now used to find a phenomenolog-
ical representation of the phase diagram of the bimodal
RFIM. Let us first attempt an elliptical fit using the fol-
lowing ansatz

h = hc

√

1 −
(

Tc;h

τ

)x

. (10)

The rescaling temperature factor τ in equation (10) will
be handled either as a free-parameter during the fit, or as
a fixed-parameter using the best known estimate for the
critical temperature of the zero-field Ising model, namely
Tc;0 = 4.51153 [81]. The resulting phase diagrams almost
coincide (see Fig. 4 where for clarity reasons only the latter
case is shown) and are described respectively by the fol-
lowing (hc, τ , x; χ2) parameter values, including the value
of the χ2-test: (2.212(29), 4.50394(778), 1.862(87);∼10−4)
and (2.215(35), 4.51153, 1.847(92); ∼10−4), respectively.
Thus, our fitting attempts with equation (10) produce a
value for the critical disorder which is very close to the
estimates obtained from the zero-temperature studies of
the model [27,28,30]. Furthermore, the fitting using the
temperature rescaling factor τ in equation (10) as a free-
parameter produces a fairly good estimate for the critical
temperature of the zero-field Ising model [81].

As an alternative to the above elliptical fit, we have
also considered for comparison the following power-law
ansatz [36]

h = hc

(
Tc;0 − Tc;h

Tc;0

)x

. (11)

Fig. 4. Approximations of the phase diagram of the 3D bi-
modal RFIM. Two fitting attempts are shown. The solid line
corresponds to the elliptical ansatz (10) giving hc = 2.215(35),
while the dashed line to the power-law ansatz (11) giving
hc = 2.277(49). The range of ground-state estimates for hc and
the zero-field’s critical temperature Tc;0 = 4.51153 are marked
on the axis. The inset shows the shifting of the pseudocritical
temperature TL;h for three values of the disorder strength, i.e.
h = 2.1, 2.15, and 2.2.

The attempt to fit the same data to this law is illustrated
also in Figure 4 by the dashed line. In this case we find
a noticeable overestimation of hc, namely hc = 2.277(49)
and a much larger (by a factor of 70) value of χ2 of the
fit. Therefore, we conclude that the elliptical law of equa-
tion (10) provides a better representation of the phase
diagram of the RFIM. Of course, our attempt above aims
only at a numerical approximation for the main part of the
diagram and not at the correct asymptotic behavior at its
ends. For instance, the behavior of the phase diagram at a
very small neighborhood around the critical temperature
of the pure system, is expected to be determined by the
susceptibility exponent γ of the pure system [37,39,82], as
follows from the phenomenological renormalization argu-
ments of reference [39]. Accordingly, the slope of the phase
diagram at this end is expected to behave as δh ∼ (δT )γ

(where γ = 1.2358 for the pure 3D Ising model [83]) and
not with the exponent 1/2 of the ansatz (10). It appears
that similar elliptical laws have been also used previously
by other authors for the Gaussian RFIM [31,34], although
these were not stated explicitly.

Finally, we would like to note that we have included in
Figure 4 some more data points for smaller values of the
disorder strength from previous numerical works. These
are the data for h = 0.5, 1, and 1.5 (shown by stars in
the figure) from our previous investigation of the phase
diagram of the model [36] and three more points (open
circles) estimated by Rieger and Young [58]. These points
are close enough to our approximate phase diagram and
the small deviation comes possibly from the fact that
these have been estimated, in both cases, by applying
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equation (9) to rather small sizes: L ≤ 24 and L ≤ 16,
respectively (see also the discussion below).

At this point, let us comment on the significance of our
notation concerning the shift exponent νh in equation (9).
As mentioned earlier, we have tried to avoid the influence
of the very small L-behavior in our estimates, thus exclud-
ing from our fitting attempts the data for L = 4. This is
a compromise followed because in our study (and in ef-
fect in all finite-temperature studies) a rather restricted
L-range is available for performing finite-size scaling anal-
ysis. However, it has been pointed out in reference [36] that
the estimates based on such restricted ranges should not
be completely trusted and this may be particularly true
for the shift exponent νh. For instance, the range L = 4–24
will produce quite different estimates, for both Tc;h and
νh, from those obtained above from the range L = 8–32
and this fact, together with the use of the power-law in
equation (11), are the two reasons behind our earlier over-
estimation of hc (hc = 2.42(18) in Ref. [36]). The general
asymptotic behavior of the RFIM follows different com-
plex routes that appear to strongly depend on the value
of the disorder strength h and different ranges of lattice
sizes may be needed in order to approach the asymptotic
behavior for different values of disorder strengths. Even
the observation of an appreciable disorder strength de-
pendence on νh, should be reluctantly identified as a pos-
sible violation of universality along the phase boundary,
although this violation of universality is one of the strongly
supported scenarios in the literature [29]. The violation of
universality for the case of the 3D RFIM has been dis-
cussed a few years ago by Sourlas [29]. Equivalent studies
of universality violations have been reported also in other
glassy systems [84], reenforcing the view that the concept
of universality in complex systems is not fully clarified.

We proceed now with an alternative estimation of the
critical disorder strength. Firstly, let us point out that
for each value of L, our data can be used to produce a
finite-size phase diagram. Provided that the phase dia-
gram points do not decline appreciably from the above
elliptical law, we may attempt to construct a finite-size
sequence of diagrams by using the finite-size version of
equation (10)

h = hc;L

√

1 −
(

TL;h

τL

)x

, (12)

where now the rescaling temperature factor τL may be
either handled as a free-parameter during the fit or as
a fixed-parameter at the corresponding zero-field’s Ising
model pseudocritical temperatures taken from Table 4 of
reference [54]. Using this latter choice for τL, Figure 5 pro-
vides a test of this approach producing two very similar
phase diagrams for the size L = 12. The two diagrams
are obtained using the two different sets of phase diagram
points corresponding to set I and set II of the disorder
strength values. The first set of points (filled triangles) is
determined over an ensemble of Q = 20 realizations of the
RF and corresponds to set I, i.e. simulation at h = 2.25
and suitable extrapolation in the range h = 2.1–2.4. The
other set of points (open circles) is determined over a

Fig. 5. Finite-size elliptical phase diagrams for L = 12 us-
ing two different extrapolation sets of disorder strength values
(set I (filled triangles) and set II (open circles)) and different
realizations ensembles. The solid and dashed lines are ellipti-
cal fits of the form (12) with comparable values of χ2 of the
order of 10−7 giving for the pseudocritical disorder strength
the values hc;12 = 2.56(3) and hc;12 = 2.56(2), respectively.
The application of the finite-size version of the power-law (11),
shown by the dotted line, has a larger value of χ2 = 10−5

and produces an overestimation for the pseudocritical disorder
strength: hc;12 = 2.77(5).

larger ensemble of Q = 250 realizations of the RF and
corresponds to set II, i.e simulation at h = 2 and extrapo-
lation in the range h = 1.7–2.2. The application of the el-
liptical law (12) gives the two very similar phase diagrams
shown in Figure 5 by the solid and dashed lines for the two
set of points, respectively. These two diagrams, with com-
parable values for χ2 of the order of 10−7, come together
to the same point at T = 0, giving the value hc;12 = 2.56
for the finite-size (L = 12) critical disorder strength. For
illustration reasons, we have also included in this figure
the attempt using the corresponding finite-size version of
equation (11) for the set of points obtained from the sim-
ulations at the value h = 2.25 (dotted line). Again the χ2

quality of the fit is worst for the power-law (χ2 = 10−5)
and produces a clear overestimation for the pseudocriti-
cal disorder strength of the order of hc;12 = 2.77(5). The
comparison between the two finite-size elliptical phase di-
agrams, corresponding to the two sets of points (h = 2.25
and h = 2), is on the other hand very convincing. Thus,
Figure 5 provides strong evidence in favor of our choice
of using in our simulations for all lattice sizes the strong-
disorder regime corresponding to the value h = 2.25. In
particular it shows that our data based on only the Q = 20
RF’s are sufficient for our proposes of estimating the phase
diagram.

Figure 6 presents the finite-size elliptical phase dia-
grams for lattice sizes in the range L = 8–32, using set I
of the disorder strength values. For the lattice size L = 4
we have not drawn a finite-size phase diagram, since it is
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Fig. 6. Finite-size elliptical phase diagrams for lattice sizes in
the range L = 8–32, using set I of the disorder strength val-
ues. The drawn lines represent the finite-size elliptical fittings
according to equation (12), in which the rescaling tempera-
ture factor τL was fixed at the corresponding zero-field’s Ising
model pseudocritical temperatures.

quite evident from the corresponding open star points in
Figure 6 that they decline very early, at about the value
h = 2.2, from the elliptical law. No such deviation is ob-
served for the other lattice sizes, within the set I of dis-
order values, and this fortifies our choice to use the par-
ticular set I for these lattice sizes. Of course, an attempt
to push our approach to even larger lattices may require
a WL simulation at h = 2.2 and a corresponding set of
somewhat smaller disorder values. The drawn lines in Fig-
ure 6 represent the finite-size elliptical fittings according
to equation (12), in which the rescaling temperature factor
τL was fixed at the corresponding zero-field’s Ising model
pseudocritical temperatures. For clarity the diagrams us-
ing τL as a free-parameter are not shown. However, the
main frame and the inset of Figure 7 illustrate the smooth-
ness of the both fitting schemes and reveal a convincing
and regular shift-behavior of the finite-size critical disor-
der strengths hc;L. This behavior allows now a finite-size
analysis for the estimation of hc. The solid and dashed
lines show good quality fits to the following usual shift
power-law

hc;L = hc + bL−1/ν . (13)

Thus, the fitting attempts in Figure 7 produce estimates
for the asymptotic value of the critical disorder strength
hc, and the corresponding shift-exponent ν. The fitting
scheme based on the estimates of the pseudocritical disor-
der strengths hc;L (open circles in Fig. 7), produced by fix-
ing the rescaling temperature factor τL at the correspond-
ing zero-field’s Ising model pseudocritical temperatures,
i.e. τL = TL;0, gives hc = 2.219(83) and ν = 1.806(390).
Finally, the fitting attempt based on the corresponding
hc;L estimates (filled triangles in Fig. 7), produced by
using τL as a free-parameter, results in a almost identi-

Fig. 7. Shift behavior of the finite-size critical disorder
strengths hc;L. The inset shows the oscillations in the values of
τL, when this parameter is handled as a free-parameter. Their
behavior follows the correct trend, approaching the zero-field’s
Tc;0 = 4.51153 [81] (dotted line).

cal estimate for the critical disorder, i.e. hc = 2.219(65)
but a slightly lower estimate for the shift-exponent ν =
1.640(423). From the inset of Figure 7 we may note some
oscillations in the values of τL, when this is handled as a
free-parameter, which however appear to follow the cor-
rect trend so that τL will approach Tc;0 (dotted line) with
increasing lattice size. In both cases, the estimates for hc

compare very well with those obtained above from fit-
ting equation (10) in Figure 4 and also with those of the
ground-state approach [27,28,30]. Despite the deviation of
the two estimates for the shift-exponent and the relatively
very large variation of ν in the literature (for both the
Gaussian and bimodal cases), it is of interest to compare
here the estimate of the second case (ν = 1.64) with the
estimates 1.67(11) and 1.66(8) of references [28] and [30]
respectively, obtained by zero-temperature simulations.

The above observations provide concrete evidence in
favor of our present approach. It appears that, this method
may be capable to produce, if further pushed to larger lat-
tices, even more accurate estimates for both the critical
disorder strength and also the T = 0 correlation length
exponent, assuming that its behavior follows the observed
shift-behavior of our finite-size projections hc;L. It is well
known from the general scaling theory that, even for sim-
ple models, the equality between the correlation length’s
exponent and the shift exponent is not a necessary con-
sequence of scaling [85]. Of course, it is a general prac-
tice to assume that the correlation length behavior can
be deduced by the shift behavior of appropriate thermo-
dynamic functions. In our view, the recent strong version
of the zero-temperature fixed-point scenario by Wu and
Machta [52,53], supports the above assumption that the
finite-size projections hc;L are appropriate shifting param-
eters. The thermal states of Wu and Machta (see Fig. 4 of
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Ref. [52]) at temperatures close to the finite-size anoma-
lies are strongly correlated to the ground-states at disorder
strength values close to the zero-temperature critical point
and this strong correlation may be seen as a phenomeno-
logical justification of our assumption.

4 Conclusions

A numerical approach combining well-known techniques
has been proposed as a convenient alternative for the
study of disordered systems. Within this approach, the
well-known WL algorithm is used, at its final stage, as
an entropic sampling method, and multi-parametric his-
tograms, appropriate for the study of the system, are pro-
duced. The main advantage of this scheme is that the re-
quirement of multi-parametric WL sampling is surpassed
and by using the DOS, obtained via the WL method,
and the accumulated histogram information, the thermal
properties of the disordered system may be obtained in
a neighborhood of the simulated disorder strength value.
The numerical techniques presented in this paper may find
further applications in the study of critical properties of
other challenging disordered systems. Via the above ap-
proach, we have studied the general size-shift behavior of
the low-temperature part of the phase diagram of the 3D
bimodal RFIM. Our detailed analysis provided an over-
all reliable representation of the main part of the phase
diagram, yielding accurate estimates for the critical disor-
der strength. These estimates are in agreement with those
from previous zero-temperature studies of the model in-
cluding the estimates for the correlation length’s expo-
nent.

As a closing remark, we would like to mention that,
using our WL DOS’s — for some typical RF realizations,
at the simulated disorder strength value h = 2.25 – we
have also observed, for the larger sizes studied, first-order-
like double peaks in the energy probability densities, in
agreement with the recent observations of Hernández and
Ceva [51], and Wu and Machta [52,53], mentioned in the
introduction. This main issue appears to be still a mat-
ter of controversy and we are currently carrying out fur-
ther research in order to clarify the persistence (or not)
of such first-order-like characteristics in the asymptotic
limit. However, the full resolution of this aspect requires
an understanding of the complex finite-size effects of the
RFIM at the strong-disorder regime and substantial com-
puter resources to be devoted for the simulation of large
ensembles of RF realizations in a convenient neighborhood
of disorder strength values.
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